dc.contributor.author |
Maingi, Damian M. |
|
dc.date.accessioned |
2018-03-20T09:14:34Z |
|
dc.date.available |
2018-03-20T09:14:34Z |
|
dc.date.issued |
2012 |
|
dc.identifier.issn |
2669-2673 |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/123456789/188 |
|
dc.description.abstract |
For all integers a, b > 0 we establish explicitly the existence of monads on a milt projective space Pa x Pb following the conditions established by Floystad. That is for all positive integers α,β,ϒ there exists a monad on the multiprojective space X = Pa x Pb whose maps A and B have entries being linear in two sets of homogeneous coordinates wo sets of homogeneous coordinates |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
International Mathematical Forum |
en_US |
dc.subject |
Multiprojective space |
en_US |
dc.subject |
Monads |
en_US |
dc.title |
MONADS ON MULTIPROJECTIVE SPACE, PA X PB |
en_US |
dc.type |
Article |
en_US |